Knowledge-based Support Vector Machine Classifiers via Nearest Points

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge-Based Support Vector Machine Classifiers

Prior knowledge in the form of multiple polyhedral sets, each belonging to one of two categories, is introduced into a reformulation of a linear support vector machine classifier. The resulting formulation leads to a linear program that can be solved efficiently. Real world examples, from DNA sequencing and breast cancer prognosis, demonstrate the effectiveness of the proposed method. Numerical...

متن کامل

Improvement of Nearest-Neighbor Classifiers via Support Vector Machines

Theoretically well-founded, Support Vector Machines (SVM) are well-known to be suited for efficiently solving classification problems. Although improved generalization is the main goal of this new type of learning machine, recent works have tried to use them differently. For instance, feature selection has been recently viewed as an indirect consequence of the SVM approach. In this paper, we al...

متن کامل

Support Vector Machine Classifiers with Uncertain Knowledge Sets via Robust Optimization

In this paper we study Support Vector Machine(SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior knowled...

متن کامل

Sparse least squares Support Vector Machine classifiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...

متن کامل

Support Vector Machine Classifiers for Asymmetric Proximities

The aim of this paper is to afford classification tasks on asymmetric kernel matrices using Support Vector Machines (SVMs). Ordinary theory for SVMs requires to work with symmetric proximity matrices. In this work we examine the performance of several symmetrization methods in classification tasks. In addition we propose a new method that specifically takes classification labels into account to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2012

ISSN: 1877-0509

DOI: 10.1016/j.procs.2012.04.135